ELK 35 S

REGOLATORE ELETTRONICO DIGITALE A MICROPROCESSORE

ISTRUZIONI PER L'USO Vr. 02 (ITA) - 04/07 - cod.: ISTR 07462

EL.CO. S.r.I.

Via Lago di Molveno, 20 36015 SCHIO (VI) ITALY TEL.: +39 0445 661722 FAX: +39 0445 661792

internet : http://www.elco-italy.com e-mail: support@elco-italy.com

PREMESSA

Nel presente manuale sono contenute le informazioni necessarie ad una corretta installazione e le istruzioni per l'utilizzo e la manutenzione del prodotto, si raccomanda pertanto di leggerlo attentamente e di conservarlo.

La presente pubblicazione è di esclusiva proprietà della EL.CO. S.R.L. la quale pone il divieto assoluto di riproduzione e divulgazione, anche parziale, se non espressamente autorizzata.

La EL.CO. S.R.L. si riserva di apportare modifiche estetiche e funzionali in qualsiasi momento e senza alcun preavviso.

Qualora un guasto o un malfunzionamento dell'apparecchio possa creare situazioni pericolose o dannose per persone, cose o animali si ricorda che l'impianto deve essere predisposto con dispositivi aggiuntivi atti a garantire la sicurezza.

La EL.CO. S.R.L. ed i suoi legali rappresentanti non si ritengono in alcun modo responsabili per eventuali danni a persone, cose o animali derivanti da manomissioni, uso improprio, errato o comunque non conforme alle caratteristiche dello strumento.

INDICE

- 1 DESCRIZIONE STRUMENTO
- 1.1 DESCRIZIONE GENERALE
- 1.2 DESCRIZIONE PANNELLO FRONTALE
- 2 PROGRAMMAZIONE
- 2.1 IMPOSTAZIONE RAPIDA DEI SET
- 2.2 PROGRAMMAZIONE DEI PARAMETRI
- 2.3 PROTEZIONE DEI PARAMETRI MEDIANTE PASSWORD E LIVELLI DI PROGRAMMAZIONE PARAMETRI
- 3 AVVERTENZE PER INSTALLAZIONE ED USO
- 3.1 USO CONSENTITO
- 3.2 MONTAGGIO MECCANICO
- 3.3 COLLEGAMENTO ELETTRICO
- 3.4 SCHEMA ELETTRICO DI COLLEGAMENTO
- 4 FUNZIONAMENTO
- 4.1 MISURA E VISUALIZZAZIONE
- 4.2 REGOLATORE ON/OFF
- 4.3 REGOLATORE ON/OFF A ZONA NEUTRA
- 4.4 REGOLATORE PID
- 4.5 FUNZIONE DI AUTOTUNING
- 4.6 VARIAZIONE DINAMICA DEL SET POINT "SP1" (RAMPA)
- 4.7 FUNZIONI DI RITARDO ATTIVAZIONE USCITE
- 4.8 CONFIGURAZIONE PARAMETRI CON KEY 01
- 5 TABELLA PARAMETRI PROGRAMMABILI
- 6 PROBLEMI, MANUTENZIONE E GARANZIA
- 6.1 SEGNALAZIONI DI ERRORE
- 6.2 PULIZIA
- 6.3 GARANZIA E RIPARAZIONI
- 7 DATI TECNICI
- 7.1 CARATTERISTICHE ELETTRICHE
- 7.2 CARATTERISTICHE MECCANICHE
- 7.3 DIMENSIONI MECCANICHE
- 7.4 CARATTERISTICHE FUNZIONALI
- 7.5 TABELLA RANGE DI MISURA
- 7.6 CODIFICA DELLO STRUMENTO

1 - DESCRIZIONE STRUMENTO

1.1 - DESCRIZIONE GENERALE

Il modello **ELK** 35 S è un regolatore digitale a microprocessore, con regolazione ON/OFF, ON/OFF a Zona Neutra, PID e con funzione di **AUTOTUNING** per la regolazione PID.

Lo strumento può avere sino a 2 uscite a relè o per il pilotaggio di relè statici (SSR). Il valore di processo viene visualizzato su 4 display rossi mentre lo stato delle uscite viene segnalato da 2 led. L'apparecchio dispone inoltre di un indicatore di scostamento costituito da 3 led. In funzione della sonda che si desidera collegare all'ingresso sono disponibili 4 modelli:

C: per termocoppie (J, K, S e Sensori ad infrarosso EL.CO. IRS), segnali in mV (0..50/60 mV, 12..60 mV) e termoresistenze Pt100.

 $\boldsymbol{\mathsf{E}}$: per termocoppie (J, K, S e Sensori ad infrarosso EL.CO. IRS), segnali in mV (0..50/60 mV, 12..60 mV) e termistori PTC o NTC.

I : per segnali analogici normalizzati 0/4..20 mA.

V: per segnali analogici normalizzati 0..1 V, 0/1..5V, 0/2..10V

1.2 - DESCRIZIONE PANNELLO FRONTALE

- **1 Tasto P**: Utilizzato per accedere alla programmazione dei parametri di funzionamento e per confermare la selezione.
- 2 Tasto DOWN : Utilizzato per il decremento dei valori da impostare e per la selezione dei parametri. Se mantenuto premuto

uscire dalla programmazione.

- 3 Tasto UP: Utilizzato per l'incremento dei valori da impostare e per la selezione dei parametri. Se mantenuto premuto durante la modalità di programmazione parametri consente di uscire dalla programmazione.
- 4 Tasto U: Quando ci si trova in modalità di programmazione con accesso mediante password può essere utilizzato per modificare il livello di programmazione dei parametri (vedi par. 2.3).
- 5 Led OUT1 : Indica lo stato dell'uscita OUT1 6 - Led OUT2: Indica lo stato dell'uscita OUT2
- 7 Led SET : Indica l'ingresso nella modalità di impostazione rapida e il livello di programmazione dei parametri nella modalità di programmazione.
- 8 Led Indice di scostamento: Indica che il valore di processo è inferiore rispetto al Set SP1 del valore impostato al par. "AdE".
- 9 Led = Indice di scostamento: Indica che il valore di processo è all'interno del campo [SP1+AdE ... SP1-AdE]
- 10 Led + indice di scostamento: Indica che il valore di processo è superiore rispetto al Set SP1 del valore impostato al par. "AdE".
- 11 Led AT : Indica la funzione di Autotuning in corso (acceso)

2 - PROGRAMMAZIONE

2.1 - IMPOSTAZIONE RAPIDA DEI SET

Premere il tasto P quindi rilasciarlo e il display visualizzerà "SP 1" alternato al valore impostato. Per modificarlo agire sui tasti UP per incrementare il valore o DOWN per decrementarlo. Questi tasti agiscono a passi di un digit ma se mantenuti premuti oltre un secondo il valore si incrementa o decrementa in modo veloce e, dopo due secondi nella stessa condizione, la velocità aumenta ulteriormente per consentire il rapido raggiungimento del valore desiderato. Il Set point "SP1" sarà impostabile con un valore compreso tra il valore programmato al par. "SP1L" e il valore programmato al par. "SP1H". Se è presente solo il Set Point 1 una volta impostato il valore desiderato premendo il tasto P si esce dalla modalità rapida di impostazione. Se invece è impostabile anche il Set Point 2 premendo e rilasciando ancora il tasto P il display visualizzerà "SP 2" alternato al valore impostato. Per modificarlo agire quindi sui tasti UP e DOWN. Il Set point "SP2" sarà impostabile con un valore compreso tra il valore programmato al par. "SP2L" e il valore programmato al par. "SP2H". Una volta impostato il valore desiderato premendo il tasto P si esce dalla modalità rapida di impostazione dei Set Point, L'uscita dal modo di impostazione rapida dei Set avviene pertanto alla pressione del tasto P dopo la visualizzazione dell'ultimo Set oppure automaticamente non agendo su alcun tasto per circa 15 secondi, trascorsi i quali il display tornerà al normale modo di funzionamento.

2.2 - PROGRAMMAZIONE DEI PARAMETRI

Per avere accesso ai parametri di funzionamento dello strumento occorre premere il tasto P e mantenerlo premuto per circa 3 secondi, trascorsi i quali il display visualizzerà il codice che identifica il primo parametro e con i tasti UP e DOWN sarà possibile selezionare il parametro che si intende editare. Una volta selezionato il parametro desiderato premere il tasto P, il display visualizzerà alternativamente il codice del parametro e la sua impostazione che potrà essere modificata con i tasti UP o DOWN. Impostato il valore desiderato premere nuovamente il tasto P: il nuovo valore verrà memorizzato e il display mostrerà nuovamente solo la sigla del parametro selezionato. Agendo sui tasti UP o DOWN è quindi possibile selezionarne un altro parametro e modificarlo come descritto. Per uscire dal modo di programmazione non agire su alcun tasto per circa 30 secondi, oppure mantenere premuto il tasto UP o DOWN sino ad uscire dalla modalità di programmazione.

2.3 - PROTEZIONE DEI PARAMETRI MEDIANTE PASSWORD E LIVELLI DI PROGRAMMAZIONE PARAMETRI

Lo strumento dispone di una funzione di protezione dei parametri mediante password personalizzabile attraverso il par. "PASS". Qualora si desideri disporre di questa protezione impostare al

durante la modalità di programmazione parametri consente di parametro "PASS" il numero di password desiderato ed uscire dalla programmazione parametri. Quando la protezione è attiva, per poter aver accesso ai parametri, premere il tasto P e mantenerlo premuto per circa 3 secondi, trascorsi i quali il display visualizzerà il parametro "r.PAS" e premendo ancora il tasto "P" il display visualizzerà "0". A questo punto impostare, attraverso i tasti UP e DOWN, il numero di password programmato e premere il tasto "P". Se la password è corretta il display visualizzerà il codice che identifica il primo parametro e sarà possibile programmare i parametri dello strumento con le stesse modalità descritte al paragrafo precedente. La protezione mediante password è disabilitata impostando il par. "PASS" = OFF. Dall'impostazione di fabbrica dello strumento la protezione mediante password agisce su tutti i parametri. Qualora si desideri, dopo aver abilitato la Password mediante il parametro "PASS", rendere programmabili senza protezione mediante password alcuni parametri è sufficiente seguire la seguente procedura. Accedere alla programmazione attraverso la Password e selezionare il parametro che si vuole rendere programmabile senza password. Un volta selezionato il parametro se il led SET è spento significa che il parametro è programmabile solo mediante password (è quindi "protetto") se invece è acceso significa che il parametro è programmabile anche senza password (è quindi "non protetto"). Per modificare la visibilità del parametro premere il tasto U e mantenerlo premuto per circa 1 sec.: il led SET cambierà stato indicando il nuovo livello di accessibilità del parametro (acceso = non protetto; spento = protetto mediante password). In caso di Password abilitata e nel caso in cui vengano "sprotetti" alcuni parametri quando si accede alla programmazione verranno visualizzati tutti i parametri non protetti e il par. "r.PAS" attraverso il quale sarà possibile accedere ai parametri "protetti".

NOTA: In caso di smarrimento della password togliere alimentazione allo strumento, premere il tasto P e ridare alimentazione allo strumento mantenendo premuto il tasto per circa

Si avrà così accesso a tutti i parametri e sarà possibile pertanto verificare e modificare il parametro "PASS".

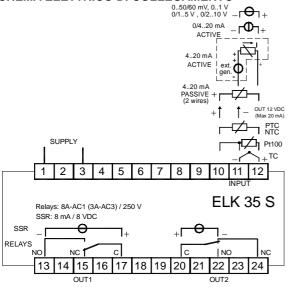
3 - AVVERTENZE PER INSTALLAZIONE ED USO

3.1 - USO CONSENTITO

Lo strumento è stato concepito come apparecchio di misura e regolazione in conformità con la norma EN61010-1 per il funzionamento ad altitudini sino a 2000 m. L'utilizzo dello strumento in applicazioni non espressamente previste dalla

norma sopra citata deve prevedere tutte le adeguate misure di protezione. Lo strumento NON può essere utilizzato in ambienti con atmosfera pericolosa (infiammabile od esplosiva) senza una adequata protezione. Si ricorda che l'installatore deve assicurarsi che le norme relative alla compatibilità elettromagnetica siano anche dopo l'installazione dello strumento. eventualmente utilizzando appositi filtri. Qualora un guasto o un malfunzionamento dell'apparecchio possa creare situazioni pericolose o dannose per persone, cose o animali si ricorda che l'impianto deve essere predisposto con dispositivi elettromeccanici aggiuntivi atti a garantire la sicurezza.

3.2 - MONTAGGIO MECCANICO


Lo strumento, in contenitore 4 moduli DIN, è concepito per il montaggio su guida OMEGA DIN entro un involucro. Evitare di collocare la parte interna dello strumento in luoghi soggetti ad alta o sporcizia che possono provocare condensa o introduzione nello strumento di parti o sostanze conduttive. Assicurarsi che lo strumento abbia una adeguata ventilazione ed evitare l'installazione in contenitori dove sono collocati dispositivi che possano portare lo strumento a funzionare al di fuori dai limiti di temperatura dichiarati. Installare lo strumento il più lontano possibile da fonti che possono generare disturbi elettromagnetici come motori, teleruttori, relè, elettrovalvole ecc.

3.3 - COLLEGAMENTI ELETTRICI

Effettuare le connessioni collegando un solo conduttore per morsetto e seguendo lo schema riportato, controllando che la

l'assorbimento degli attuatori collegati allo strumento non sia superiore alla corrente massima consentita. Lo strumento, essendo previsto per collegamento permanente entro un'apparecchiatura, non è dotato nè di interruttore nè di dispositivi interni di protezione da sovracorrenti. Si raccomanda pertanto di prevedere l'installazione di un dispositivo di protezione da sovracorrenti e di un interruttore/sezionatore di tipo bipolare, marcato come dispositivo di disconnessione, che interrompa l'alimentazione dell'apparecchio. Tale interruttore deve essere posto il più possibile accessibile vicino allo strumento e in luogo facilmente dall'utilizzatore. Inoltre si raccomanda di proteggere adeguatamente l'alimentazione di tutti i circuiti connessi allo strumento con dispositivi (es. fusibili) adeguati alle correnti circolanti. Si raccomanda di utilizzare cavi con isolamento appropriato alle tensioni, alle temperature e alle condizioni di esercizio e di fare in modo che i cavi relativi ai sensori di ingresso siano tenuti lontani dai cavi di alimentazione e da altri cavi di potenza al fine di evitare l'induzione di disturbi elettromagnetici. Se alcuni cavi utilizzati per il cablaggio sono schermati si raccomanda di collegarli a terra da un solo lato. Infine si raccomanda di controllare che i parametri impostati siano quelli desiderati e che l'applicazione funzioni correttamente prima di collegare le uscite agli attuatori onde evitare anomalie nell'impianto che possano causare danni a persone, cose o animali.

3.4 - SCHEMA ELETTRICO DI COLLEGAMENTO

4 - FUNZIONAMENTO

4.1 - MISURA E VISUALIZZAZIONE

Per quanto riguarda il tipo di ingresso sono disponibili 4 modelli: **C**: per termocoppie (J, K, S e Sensori ad infrarosso EL.CO. IRS), segnali in mV (0..50/60 mV, 12..60 mV) e termoresistenze Pt100. **E**: per termocoppie (J, K, S e Sensori ad infrarosso EL.CO. IRS),

segnali in mV (0..50/60 mV, 12..60 mV) e termistori PTC o NTC. I : per segnali analogici normalizzati 0/4..20 mA.

V: per segnali analogici normalizzati 0..1 V, 0/1..5V, 0/2..10V In funzione del modello a disposizione impostare al par. "**SEnS**" il tipo di sonda in ingresso che può essere:

- per termocoppie J (J), K (CrAL), S (S) o per sensori all'infrarosso EL.CO. serie IRS con linearizzazione J (Ir.J) o K (Ir.CA)
- per termoresistenze Pt100 IEC (Pt1)
- per termistori PTC KTY81-121 (Ptc) o NTC 103AT-2 (ntc)
- per segnali in mV: 0..50 mV (0.50), 0..60 mV (0.60), 12..60 mV (12.60)
- per segnali normalizzati in corrente 0..20 mA (0.20) o 4..20 mA (4.20)
- per segnali normalizzati in tensione 0..1 V (0.1), 0..5 V (0.5), 1..5 V (1.5), 0..10 V (0.10) o 2..10 V (2.10).

Al cambio di questo parametro si raccomanda di spegnere e riaccendere lo strumento per ottenere una misura corretta.

tensione di alimentazione sia quella indicata sullo strumento e che l'assorbimento degli attuatori collegati allo strumento non sia superiore alla corrente massima consentita. Lo strumento, essendo previsto per collegamento permanente entro un'apparecchiatura, per collegamento per collegamento permanente entro un'apparecchiatura, per collegamento per collegamento permanente entro un'apparecchiatura, per collegamento per col

Per quanto riguarda gli strumenti configurati con ingresso per segnali analogici normalizzati è invece necessario innanzi tutto impostare la risoluzione desiderata al parametro "**dP**" (0=1; 1=0,1; 2=0,01; 3=0,001) e quindi al parametro "**SSC**" il valore che lo strumento deve visualizzare in corrispondenza dell'inizio scala (0/4 mA, 0/12 mV, 0/1 V o 0/2 V) e al parametro "**FSC**" il valore che lo strumento deve visualizzare in corrispondenza del fondo scala (20 mA, 50 mV, 60 mV, 1V, 5 V o 10 V).

Lo strumento consente la calibrazione della misura, che può essere utilizzata per una ritaratura dello strumento secondo le necessità dell'applicazione, mediante i par. "OFSt" e "rot".

Impostando il par. "rot"=1,000, al par. "OFSt" è possibile impostare un offset positivo o negativo che viene semplicemente sommato al valore letto dalla sonda prima della visualizzazione e che risulta costante per tutte le misure.

Se invece si desidera che l'offset impostato non sia costante per tutte le misure è possibile effettuare la calibrazione su due punti a piacere.

In questo caso, per stabilire i valori da impostare ai parametri "OFSt" e "rot", occorrerà applicare le seguenti formule:

"rot" = (D2-D1) / (M2-M1) "OFSt" = D2 - ("rot" x M2) dove:

M1 =valore misurato 1

D1 = valore da visualizzare quando lo strumento misura M1

M2 =valore misurato 2

D2 = valore da visualizzare quando lo strumento misura M2

Ne deriva che lo strumento visualizzerà:

DV = MV x "rot" + "OFSt"

dove: DV = Valore visualizzato MV= Valore misurato

<u>Esempio1:</u> Si desidera che lo strumento visualizzi il valore realmente misurato a 20 ° ma che a 200° visualizzi un valore inferiore di 10°(190°).

Ne deriva che : M1=20 ; D1=20 ; M2=200 ; D2=190

"rot" = (190 - 20) / (200 - 20) = 0,944 "OFSt" = 190 - (0,944 x 200) = 1,2

<u>Esempio2</u>: Si desidera ché lo strumento visualizzi 10° quando il valore realmente misurato è 0° ma che a 500° visual izzi un valore superiore di 50° (550°).

Ne deriva che: M1=0; D1=10; M2=500; D2=550

"rot" = (550 - 10) / (500 - 0) = 1,08 "OFSt" = 550 - (1,08 x 500) = 10

Mediante il par. "FiL" è possibile impostare la costante di tempo del filtro software relativo alla misura del valore in ingresso in modo da poter diminuire la sensibilità ai disturbi di misura (aumentando il tempo)

In caso di errore di misura è possibile fare in modo che le uscite continuino a funzionare ciclicamente secondo i tempi programmati rispettivamente ai par. "ton1" - "ton2" (tempi di attivazione) e "toF1" - "toF2" (tempi di disattivazione).

Al verificarsi di un errore della sonda lo strumento provvede ad attivare l'uscita relativa per il tempo "ton", quindi a disattivarla per il tempo "toF" e così via sino al permanere dell'errore.

Programmando "ton" = OFF l'uscita in condizioni di errore sonda resterà sempre spenta.

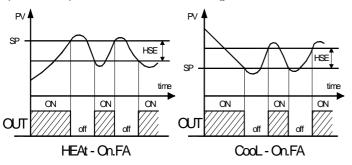
Programmando invece "ton" ad un qualsiasi valore e "toF" = OFF l'uscita in condizioni di errore sonda resterà sempre accesa.

4.2 - REGOLATORE ON/OFF

Questo modo di regolazione è attuabile impostando il parametro "Cont" = On.FA ed agisce sulle uscite OUT1 e OUT2 in funzione della misura, dei Set point "SP1" e "SP2", del modo di funzionamento "Fun1" e "Fun2", e delle isteresi "HSE1" e "HSE2" programmati.

Lo strumento attua una regolazione ON/OFF con isteresi asimmetrica.

I regolatori si comportano nel seguente modo: in caso di azione inversa, o di riscaldamento ("Fun"=HEAt), disattivano l'uscita


quando il valore di processo raggiunge il valore [SP], per riattivarla In questo caso si raccomanda l'uso di un relè statico (SSR) per il quando scende sotto al valore [SP - HSE].

Viceversa, in caso di azione diretta o di raffredamento ("Fun"=CooL), disattivano l'uscita quando il valore di processo raggiunge il valore [SP], per riattivarla quando sale al di sopra del valore [SP + HSE].

Il Set "SP2" può inoltre essere impostato come indipendente o dipendente dal set "SP1" tramite il parametro "SP2C".

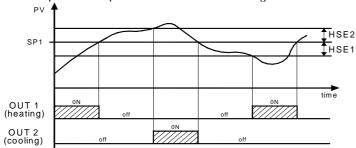
Nel caso "SP2" fosse impostato come dipendente ("SP2C" = di) il Set effettivo di regolazione dell'uscita 2 sarà [SP1+SP2].

Si ricorda che il funzionamento delle uscite operanti con la modalità ON/OFF può essere condizionato dalle funzioni di ritardo impostabili ai parametri "Ptd" e "PtS" di seguito descritte.

4.3 - REGOLAZIONE ON/OFF A ZONA NEUTRA

Il funzionamento a Zona Neutra viene utilizzato per il controllo degli impianti che possiedono un elemento che causa un incremento positivo (ad es. Riscaldante, Umidificante ecc.) e un elemento che causa un incremento Negativo (ad es. Refrigerante, Deumidificante

Questo funzionamento è attuabile quando sono presenti 2 uscite e si ottiene programmando il par. "Cont" = nr .

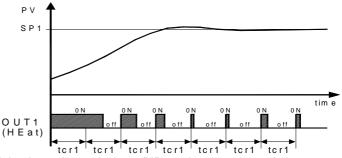

Con questa programmazione lo strumento esclude dalla programmazione i parametri "SP2" , "Fun1" e "Fun2".

Il funzionamento di regolazione agisce sulle uscite in funzione della misura, del Set point "SP1", e delle isteresi "HSE1" e "HSE2" programmati.

Il regolatore si comporta nel seguente modo: spegne le uscite quando il valore di processo raggiunge il Set SP1 e attiva l'uscita OUT1 quando il valore di processo è minore di [SP1-HSE1], oppure accende l'uscita OUT2 quando il valore di processo è maggiore di

Di conseguenza l'elemento che causa incremento Positivo andrà collegato all'uscita OUT1 mentre l'elemento di incremento negativo andrà collegato all'uscita OUT2.

Si ricorda che il funzionamento delle uscite operanti con la modalità ON/OFF a Zona Neutra può essere condizionato dalle funzioni di ritardo impostabili ai parametri "Ptd" e "PtS" di seguito descritte.


4.4 - REGOLATORE PID

Il modo di regolazione di tipo PID a Singola Azione è attuabile impostando il parametro "Cont" = Pid ed agisce solo sull'uscita OUT1 in funzione del Set point "SP1", del modo di funzionamento "Fun1", e del risultato dell'algoritmo di controllo PID a due gradi di libertà dello strumento.

In questa modalità l'uscita OUT2 opera in modalità ON/OFF.

Per ottenere una buona stabilità della variabile in caso di processi veloci, il tempo di ciclo "tcr1" deve avere un valore basso con un intervento molto frequente dell'uscita di regolazione.

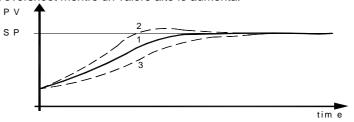
comando dell'attuatore.

L'algoritmo di regolazione PID a singola azione dello strumento prevede l'impostazione dei seguenti parametri:

"Pb" - Banda Proporzionale

"tcr1" - Tempo di ciclo dell'uscita

"Int" - Tempo Integrale


"rS" - Reset manuale (solo se "Int" =0)

"dEr" - Tempo derivativo

"FuOC" - Fuzzy Overshoot Control

Quest'ultimo parametro premette di eliminare le sovraelongazioni della variabile (overshoot) all'avviamento del processo o al cambiamento del Set Point.

Occorre tener presente che un valore basso del parametro riduce l'overshoot mentre un valore alto lo aumenta.

1: Valore "FuOC" OK

2: Valore "FuOC" troppo alto3: Valore "FuOC" troppo basso

4.5 - FUNZIONE DI AUTOTUNING

La funzione di **AUTOTUNING** prevede il calcolo dei parametri PID attraverso un ciclo di sintonizzazione di tipo OSCILLATORIO, terminato il quale i parametri vengono memorizzati dallo strumento e durante la regolazione rimangono costanti.

La funzione di Autotuning calcola in modo automatico i seguenti parametri:

"Pb" - Banda Proporzionale

"tcr1" - Tempo di ciclo dell'uscita

"Int" - Tempo Integrale

"dEr" - Tempo derivativo

"FuOC" - Fuzzy Overshoot Control

Per attivare la funzione di AUTOTUNING procedere come segue:

1) Impostare il Set point "SP1" desiderato.

2) Impostare il parametro "Cont" =Pid.

3) Impostare il parametro "Fun1" in funzione del processo da controllare attraverso l'uscita OUT1.

4) Impostare il parametro "Auto" come:

- se si desidera che l'autotuning venga automaticamente ogni volta che si accende lo strumento.

2 - se si desidera che l'autotuning venga automaticamente all'accensione successiva dello strumento e, una volta terminata la sintonizzazione, venga posto automaticamente il par. "Auto"=OFF.

= 3 - se si desidera avviare l'autuning manualmente, mediante il tasto U

4 - se si desidera che l'autotuning venga automaticamente ad ogni modifica del Set di regolazione.

5) Uscire dalla programmazione parametri.

6) Collegare lo strumento all'impianto comandato.

7) Attivare l'autotuning spegnendo e riaccendendo l'apparecchio se "Auto" = 1o 2, premendo il tasto U se "Auto" = 3, oppure variando il valore di Set se "Auto" = 4.

A questo punto la funzione di Autotuning è attivata e viene segnalata attraverso l'accensione del led AT.

Il regolatore attua quindi una serie di operazioni sull'impianto collegato al fine di calcolare i parametri della regolazione PID più idonei.

La durata del ciclo di Autotuning è limitata ad un massimo di 12 ore.

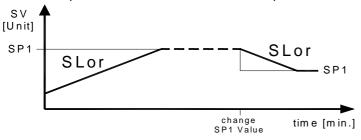
Nel caso in cui il processo non sia terminato nell'arco di 12 ore lo strumento visualizzerà "noAt".

Nel caso invece si dovesse verificare un errore della sonda lo strumento naturalmente interromperà il ciclo in esecuzione.

I valori calcolati dall'Autotuning saranno memorizzati automaticamente dallo strumento al termine della corretta esecuzione del ciclo di Autotuning nei parametri relativi alla regolazione PID.

4.6 - VARIAZIONE DINAMICA DEL SET POINT "SP1" (RAMPA)

E' possibile fare in modo che il Set point SP1 venga raggiunto in un tempo predeterminato (comunque maggiore del tempo che il sistema impiegherebbe naturalmente).


Questo può essere utile in quei processi (trattamenti termici, chimici, ecc.) in cui il Set point deve essere raggiunto gradatamente, in tempi prestabiliti.

Il funzionamento è stabilito dal seguente parametro:

"SLor" - Pendenza della rampa, espressa in unità/minuto.

Se si desidera il raggiungimento del Set "SP1" a velocità controllata è sufficiente impostare il par. "SLor" al valore desiderato.

La rampa "SLor" risulterà sempre operativa all'accensione dello strumento e quando viene cambiato il valore di Set point "SP1".

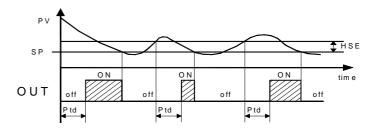
Esempio con partenza da valori inferiori al Set point e con successiva diminuzione del Set Point.

N.B: In caso di regolatore PID se si desidera effettuare l'autotuning ed è attiva una rampa questa non viene eseguita. Si raccomanda pertanto di eseguire l'Autotuning senza attivare alcuna rampa e quindi, una volta eseguita la sintonizzazione, disabilitare l'Autotuning ("Auto" = OFF) e programmare la rampa desiderata.

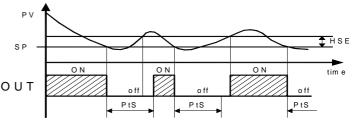
4.7 - FUNZIONI DI RITARDO ATTIVAZIONE USCITE

Nelle modalità di regolazione di tipo ON/OFF è possibile attuare due controlli a tempo sull'attivazione delle uscite.

Il primo controllo prevede un ritardo all'attivazione dell'uscita relativa secondo quanto impostato ai parametri "**Ptd1**" e "**Ptd2**". Il secondo controllo prevede un inibizione all'attivazione dell'uscita


relativa se non è trascorso il tempo impostato ai parametri "PtS1" e "PtS2".

Tali funzioni possono risultare utili allo scopo di evitare frequenti interventi delle uscite in particolare quando queste comandano dei compressori.


Se durante le fasi di ritardo la richiesta del regolatore dovesse venire a mancare naturalmente viene annullata la prevista attuazione dell'uscita.

Le funzioni di ritardo risultano disattivate programmando i relativi parametri = OFF.

Durante le fasi di ritardo accensione delle uscite, il led relativo all'uscita interessata è lampeggiante allo scopo di segnalare il ritardo in corso.

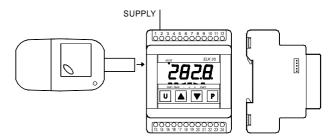
Esempio funzionamento "Ptd" con "Fun" = CooL

Esempio funzionamento "PtS" con "Fun" = CooL

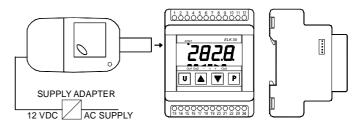
Oltre a questi ritardi è possibile impedire l'attivazione di tutte le uscite dopo l'accensione dello strumento per il tempo impostato al par. "od".

La funzione risulta disattivata per "od" = OFF.

Durante la fase di ritardo all'accensione il display mostra l'indicazione **od** alternata alla normale visualizzazione programmata.


4.8 - CONFIGURAZIONE PARAMETRI CON "KEY 01"

Lo strumento è dotato di un connettore che permette il trasferimento da e verso lo strumento dei parametri di funzionamento attraverso il dispositivo **EL.CO. KEY01** con connettore **a 5 poli**.


Questo dispositivo è utilizzabile per la programmazione in serie di strumenti che devono avere la stessa configurazione dei parametri o per conservare una copia della programmazione di uno strumento e poterla ritrasferire rapidamente.

Per l'utilizzo del dispositivo KEY 01 è possibile alimentare solo il dispositivo o solo lo strumento.

Strumento alimentato e dispositivo non alimentato

Strumento alimentato dal dispositivo

Per maggiori informazioni e le indicazioni delle cause di errore vedere il manuale d'uso relativo al dispositivo KEY 01.

5 - TABELLA PARAMETRI PROGRAMMABILI

Di seguito vengono descritti tutti i parametri di cui lo strumento può essere dotato, si fa presente che alcuni di essi potranno non essere presenti o perchè dipendono dal tipo di strumento utilizzato

o perchè sono automaticamente disabilitati in quanto parametri non necessari.

necessari.					
	Par.	Descrizione	Range	Def.	note
1	SP1L	Set Point 1 minimo	-1999 ÷ SP1H	-1999	
2	SP1H	Set Point 1 massimo	SP1L ÷ 9999	9999	
3	SP2L	Set Point 2 minimo	-1999 ÷ SP2H	-1999	
4	SP2H	Set Point 2 massimo	SPL2 ÷ 9999	9999	
5	SP2C	Legame Set Point:	in / di	in	
		in= indipendenti			
		di = SP2 relativo a SP1			
6	SP1	Set Point 1	SP1L ÷ SP1H	0	
7	SP2	Set Point 2	SP2L ÷ SP2H	0	
8	SEnS	Tipo sonda in ingresso:	input C:	J	
		J= termocoppia J	J/CrAL/S/		
		CrAL= termocoppia K	Ir.J / Ir.CA /		
		S= termocoppia S Ir.J= sens. infrarosso	Pt1 / 0.50 / 0.60 / 12.60		
		IRS J	input E :	Ptc	
		Ir.CA= sens. infrarosso	J/ CrAL/S/		
		IRS K	Ir.J / Ir.CA /		
		Pt1= termoresistenza	Ptc / ntc /		
		Pt100	0.50 / 0.60 /		
		0.50= 050 mV	12.60	4.00	
		0.60= 060 mV 12.60= 1260 mV	input I : 0.20 / 4.20	4.20	
		Ptc= termistore PTC	input V :	0.10	
		KTY81-121	0.1 /0.5 / 1.5 /	01.0	
		ntc= termistore NTC	0.10 / 2.10		
		103-AT2			
		0.20= 020 mA			
		4.20= 420 mA 0.1= 01 V			
		0.1= 01 V 0.5=05 V			
		1.5= 15 V			
		0.10= 010 V			
		2.10= 210 V			
9	SSC	Limite inferiore scala	-1999 ÷ FSC	0	
		ingresso segnali V / I	222		
10	FSC	Limite superiore scala	SSC ÷ 9999	100	
11	dP	ingresso segnali V / I Numero di cifre	Pt1 / Ptc / ntc:	0	
	ur	decimali	0/1	0	
		dominan	norm sig.:		
			0 ÷ 3		
12	Unit	Unità di misura della	℃/F	C	
		temperatura			
13	FiL	Filtro digitale ingresso	OFF÷ 20.0	1.0	
4.4	0.504	0"	sec.		
14	OFSt	Offset della misura	-1999 ÷ 9999	0	
15	rot	Rotazione della retta di misura	0.000 ÷ 2.000	1.000	
16	ton1	Tempo attivazione	OFF ÷ 99.59	OFF	
	.5.11	uscita OUT1 per sonda	min.sec	0.1	
L		guasta			
17	toF1	Tempo disattivazione	OFF ÷ 99.59	OFF	
		uscita OUT1 per sonda	min.sec		
4.0		guasta	055 00 55	0==	
18	ton2	Tempo attivazione	OFF ÷ 99.59	OFF	
		uscita OUT2 per sonda guasta	min.sec		
19	toF2	Tempo disattivazione	OFF ÷ 99.59	OFF	
	101 2	uscita OUT2 per sonda	min.sec	0	
		guasta			
20	Cont	Tipo di regolazione:	On.FA / nr /	On.FA	
		Pid= PID OUT1 (OUT2	Pid		
		è sempre On.FA)			
		On.FA= ON/OFF			
		nr= Zona Neutra (ON/OFF doppia			
		azione)			
21	Fun1	Modo di funzionamento	HEAt / CooL	HEAt	
L		uscita OUT1:		<u> </u>	
				_	_

		,		
		HEAt= Riscaldamento		
		(inversa)		
		CooL= Raffreddamento		
22	Fun2	(diretta) Modo di funzionamento	HEAt / CooL	HEAt
22	FullZ	uscita OUT2:	TILAL / COOL	I ILAL
		HEAt= Riscaldamento		
		(o inversa)		
		CooL= Raffreddamento		
		(o diretta)		
23	HSE1	Isteresi regolazione	OFF ÷ 9999	1
0.4	11050	ON/OFF OUT1	OFF ÷ 9999	1
24	HSE2	Isteresi regolazione ON/OFF OUT2	OFF ÷ 9999	1
25	Ptd1	Ritardo attivazione	OFF ÷ 99.59	OFF
20		uscita OUT1 (reg.		0.1
		ON/OFF)		
26	Ptd2	Ritardo attivazione	OFF ÷ 99.59	OFF
		uscita OUT2 (reg.	min.sec	
07	D:C4	ON/OFF)	OFF : 00 50	OFF
27	PtS1	Ritardo attivazione dopo lo spegnimento		OFF
		dopo lo spegnimento uscita OUT1 (reg.	111111.560	
		ON/OFF)		
28	PtS2	Ritardo attivazione	OFF ÷ 99.59	OFF
		dopo lo spegnimento		
		uscita OUT2 (reg.		
0.7		ON/OFF)	055	
29	od	Ritardo attuazione	OFF ÷ 99.59	OFF
30	Auto	uscite all'accensione Abilitazione	min.sec OFF /	OFF
30	Auto	dell'autotuning:	1/2/3/4	
		OFF = Non abilitato	., _, 0, ,	
		1 = Avvio ad ogni		
		accensione		
		2= Avvio alla prima		
		accensione 3= Avvio manuale		
		4= Avvio manuale		
		Point		
31	Pb	Banda proporzionale	0 ÷ 9999	40
		(reg. PID)		
32	Int	Tempo integrale (reg.	OFF ÷ 9999	300
00		PID)	sec.	
33	dEr	Tempo derivativo (reg.	OFF÷ 9999	30
34	FuOc	PID) Fuzzy overshoot control	sec. 0.00 ÷ 2.00	0.50
J -1	1 400	(reg. PID)	0.00 - 2.00	0.50
35	tcr1	Tempo di ciclo uscita	0.1 ÷ 130.0	20.0
		OUT1 (reg. PID)	sec.	
36	rS	Reset manuale (reg.	-100.0÷100.0	0.0
		PID)	%	
37	SLor	Velocità rampa Set	0.00 ÷ 99.99	InF
		SP1:	/ InF	
38	AdE	InF= Rampa non attiva Valore di scostamento	unit/min. OFF9999	5
50	AUE	indice	OII3333	, , , , , , , , , , , , , , , , , , ,
39	PASS	Password di accesso ai	OFF ÷ 9999	OFF
		parametri di	211.0000	
		funzionamento		
40	r.PAS	Richiesta Password	-1999 ÷ 9999	
		accesso ai parametri		
		protetti		

6 - PROBLEMI, MANUTENZIONE E GARANZIA

6.1 - SEGNALAZIONI DI ERRORE

Errore	Motivo	Azione
	Interruzione della sonda	Verificare la corretta
uuuu	Variabile misurata al disotto dei limiti della sonda (underrange)	connessione della sonda con lo strumento e quindi verificare il corretto

0000	Variabile misurata al disopra dei limiti della sonda (overrange)	funzionamento della sonda	
noAt	Autotuning non terminato entro 12 ore	Provare a ripetere l'autotuning dopo aver controllato il funzionamento della sonda e dell'attuatore	
ErEP	Possibile anomalia nella memoria EEPROM	Premere il tasto P	

6.2 - PULIZIA

Si raccomanda di pulire lo strumento solo con un panno leggermente imbevuto d'acqua o detergente non abrasivo e non contenente solventi.

6.3 - GARANZIA E RIPARAZIONI

Lo strumento è garantito da vizi di costruzione o difetti di materiale riscontrati entro i 12 mesi dalla data di consegna.

La garanzia si limita alla riparazione o la sostituzione del prodotto. L'eventuale apertura del contenitore, la manomissione dello strumento o l'uso e l'installazione non conforme del prodotto comporta automaticamente il decadimento della garanzia.

In caso di prodotto difettoso in periodo di garanzia o fuori periodo di garanzia contattare l'ufficio vendite EL.CO. per ottenere l'autorizzazione alla spedizione.

Il prodotto difettoso, quindi , accompagnato dalle indicazioni del difetto riscontrato, deve pervenire con spedizione in porto franco BT 73/23 e 93/68 (EN 61010-1). presso lo stabilimento EL.CO. salvo accordi diversi.

7 - DATI TECNICI

7.1 - CARATTERISTICHE ELETTRICHE

Alimentazione: 24 VAC/VDC, 100.. 240 VAC +/- 10%

Frequenza AC: 50/60 Hz Assorbimento: 4 VA circa

Ingresso/i: 1 ingresso per sonde di temperatura: tc J,K,S; sensori all'infrarosso EL.CO. IRS J e K; RTD Pt 100 IEC; PTC KTY 81-121 (990 Ω @ 25 \mathfrak{C}); NTC 103AT-2 (10K Ω @ 25 \mathfrak{C}), per segnali in mV 0...50 mV, 0...60 mV, 12 ...60 mV o segnali normalizzati 0/4...20 mA, 0..1 V, 0/1...5 V , 0/2...10 V.

Impedenza ingresso segnali normalizzati: 0/4..20 mA: 51 Ω; mV e V: 1 MΩ

Uscita/e: Sino a 2 uscite. A relè SPDT (8A-AC1, 3A-AC3 250 VAC,1/2HP 250VAC, 1/3HP 125 VAC); o in tensione per pilotaggio SSR (8mA/8VDC).

Uscita alimentazione ausiliaria: 12 VDC / 20 mA Max

Vita elettrica uscite a relè: 100000 operaz.

Categoria di installazione: II

Categoria di misura: I

Classe di protezione contro le scosse elettriche: Frontale in Classe

Isolamenti: Rinforzato tra parti in bassa tensione (alimentazione e uscite a relè) e frontale; Rinforzato tra parti in bassa tensione (alimentazione e uscite a relè) e parti in bassissima tensione (ingresso e uscite statiche); Rinforzato tra alimentazione e uscite a relè; Nessun isolamento tra ingresso e uscite statiche.

7.2 - CARATTERISTICHE MECCANICHE

Contenitore: Plastico autoestinguente UL 94 V0 Dimensioni: 4 moduli DIN ,70 x 84 mm, prof. 60 mm

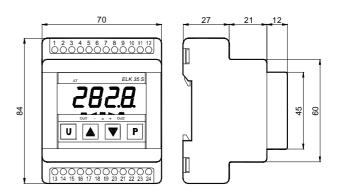
Peso: 180 g circa

Installazione: Entroquadro su guida OMEGA DIN

Connessioni: Morsettiera a vite 2,5 mm²

Grado di protezione frontale: IP 40 (morsettiera IP20)

Grado di polluzione: 2


Temperatura ambiente di funzionamento: 0 ... 50 ℃

Umidità ambiente di funzionamento: 30 ... 95 RH% senza

condensazione

Temperatura di trasporto e immagazzinaggio: -10 ... 60 ℃

7.3 - DIMENSIONI MECCANICHE[mm]

7.4 - CARATTERISTICHE FUNZIONALI

Regolazione: ON/OFF, ON/OFF a Zona Neutra, PID a singola azione.

Range di misura: Secondo la sonda utilizzata (vedi tabella)

Risoluzione visualizzazione: Secondo la sonda utilizzata. 1/0,1/0,01/0,001

Precisione totale:+/- (0,5 % fs + 1 digit); tc S: +/- (1 % fs + 1 digit) Tempo di campionamento misura: 130 ms

Massimo errore di compensazione del giunto freddo (in tc): 0,1 °C/°C con temperatura ambiente 0 ... 50 °C dopo un tempo di warm-up (accensione strumento) di 20 min.

Display: 4 Digit Rosso h 12 mm

Conformita': Direttiva CEE EMC 89/336 (EN 61326), Direttiva CEE

Omologazioni: C-UL (file n. E206847)

7.5 - TABELLA RANGE DI MISURA

INPUT	"dP" = 0	"dP"= 1, 2, 3	
tc J	0 1000 ℃		
"SEnS" = J	32 1832 °F		
tc K	0 1370 ℃		
"SEnS" = CrAI	32 2498 °F		
tc S	0 1760 ℃		
"SEnS" = S	32 3200 °F		
Pt100 (IEC)	-200 850 ℃	-199.9 850.0 ℃	
"SEnS" = Pt1	-328 1562 ℉	-199.9 999.9 °F	
PTC (KTY81-121)	-55 150 ℃	-55.0 150.0 ℃	
"SEnS" = Ptc	-67 302 ℉	-67.0302.0 ℉	
NTC (103-AT2)	-50 110 ℃	-50.0 110.0 ℃	
"SEnS" = ntc	-58 230 ℉	-58.0 230.0 ℉	
020 mA			
"SEnS" = 0.20			
420 mA			
"SEnS" = 4.20			
0 50 mV			
"SEnS" = 0.50			
0 60 mV			
"SEnS" = 0.60			
12 60 mV		-199.9 999.9	
"SEnS" = 12.60 0 1 V	-1999 9999	-19.99 99.99	
"SEnS" = 0.1	-1.999	-1.999 9.999	
0 5 V			
"SEnS" = 0.5			
1 5 V			
"SEnS" = 1.5			
0 10 V			
"SEnS" = 0.10			
2 10 V			
"SEnS" = 2.10			

7.6 - CODIFICA DELLO STRUMENTO

ELK35S a b c d e f g hh

a: ALIMENTAZIONE

24 = 24 VAC/VDC **240** = 100... 240 VAC

b: INGRESSO

C = termocoppie (J, K, S, I.R), mV, termoresistenze (Pt100) E = termocoppie (J, K, S, I.R.), mV, termistori (PTC, NTC) I = segnali normalizzati 0/4..20 mA V = segnali normalizzati 0..1 V, 0/1..5V, 0/2..10V.

c: USCITA OUT1

R = A relè

S = Uscita in tensione per SSR

d: USCITA OUT2

2R = A relè

2S = Uscita in tensione per SSR

- = Non presente

efg: CODICI NON DISPONIBILI

hh: CODICI SPECIALI